

TRANSMISOR DE PRESIÓN PARA APLICACIONES GENERALES XA-300

Página 1

TRANSMISOR DE PRESIÓN PARA APLICACIONES GENERALES XA-300

1. DESCRIPCION

Esta serie de transmisores de presión se ha desarrollado para cubrir la mayoría de aplicaciones industriales en la ingeniería mecánica, hidráulica, neumática, etc. Son típicas las destinadas a la medición continua de gases, líquidos...

El transmisor está realizado con las técnicas más novedosas y dispone en su interior de un circuito conversor de alta calidad. El margen de la tensión de alimentación del trasmisor es muy amplio y puede variar entre 8 y 35 Vdc. sin variar la señal de salida (véase en las características técnicas, la máxima resistencia de carga).

Esta gama de transmisores se puede adaptar a nuestro programa de refrigeradores para aplicaciones en altas temperaturas de proceso y a toda la gama de separadores para la industria química, alimentaria, etc. Los materiales que están en contacto con el proceso se podrán adaptar a las características físicas del producto

2. TECNICA UTILIZADA:

El sensor del transmisor de presión esta realizado con cerámica, siendo la técnica utilizada la piezoresistiva. Esta tecnología está relacionada con la deformación del diafragma, en el cual están grabadas cuatro resistencias eléctricas formando un puente de Wheastone. Por consiguiente, cualquier deformación que tenga el diafragma por efecto de una presión desequilibrará el circuito electrónico que conformará una señal de salida proporcional y lineal a la presión que soporta la célula cerámica. Los sensores cerámicos utilizados están compensados internamente en temperatura mediante resistencias PTC.

El empleo de la técnica cerámica en el campo de los transmisores de presión aporta una excelente fiabilidad al realizarse la presión directamente sobre el sensor cerámico. Al no existir ninguna cámara de fluido en su interior (aceite sintético, glicerina, etc., que pueden producir variaciones por efectos de dilatación) aporta una alta estabilidad frente a los efectos de la temperatura.

3. ESCALAS DE TRABAJO NORMALIZADAS (en Bar)

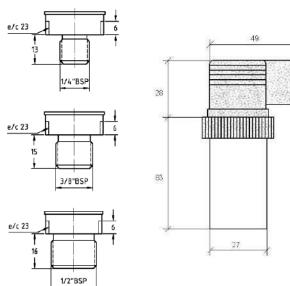
Rango	0,25	0,50	0,75	1,00	1,60	2,50	4,00	6,00
Presión rotura	3,00	3,00	3,00	3,00	5,00	12,0	12,0	25,0
Rango	10,0	16,0	25,0	40,0	60,0	100	160	250
Presión rotura	25,0	50,0	120	120	250	250	500	500

Otros rangos de trabajo y unidades (m.c.a., PSI, Kg/cm², mmHg, KPa, etc.) bajo demanda, en función de los distintos parámetros físicos de la aplicación.

Esta publicación no pretende sentar las bases de un contrato y la empresa se reserva el derecho de modificar sin previo aviso el diseño y las especificaciones de los instrumentos, de acuerdo con su política de continuo desarrollo.

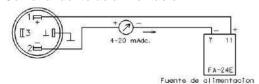
TRANSMISOR DE PRESIÓN PARA APLICACIONES GENERALES XA-300

Página 2

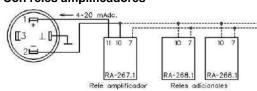

4. DATOS TÉCNICOS

4. DATUS TECNICUS					
Presiones	Relativas, absolutas y de vacío				
Campos de medida	0-0,250 Bar a 0-250 Bar (para presiones relativas)				
·	Presiones de vacío y absolutas bajo demanda				
Tipo de sensor	Cerámico				
Error combinado del sensor (histéresis, linealidad, repetibilidad)	El típico menor que 0,4 % FE				
Resolución del sensor	0,01 a 0,014 %FE				
Tiempo de respuesta	Menor que 1 mseg.				
Tensión de aislamiento sensor	2 KV				
Materiales en contacto con el proceso	Acero inox. AISI-316L, cerámica y el material de la junta				
Material de la junta	Acrilnitrilo butadieno (NBR)				
Material de la junta	Otros materiales bajo demanda (VITON, EPDM, PTFE)				
Material del cuerpo exterior	Acero inoxidable AISI-316				
Conexión a proceso	1/2, 3/8, 1/4 BSP (NPT y otros pasos de rosca bajo demanda)				
Tipo de protección	IP-65				
Señal de salida	Lineal				
Tensión de alimentación	Comprendida entre 8 y 35 Vdc.				
Protecciones eléctricas	De polaridad y de cortocircuito				
Señal de salida normalizada	4÷20 mAdc. a dos hilos				
Serial de Salida Horrializada	(otras salidas bajo demanda)				
Máxima resistencia de carga en Ω	Ra ≤ [Ub (Vdc.) -8 (Vdc)] / 0,02 Adc.				
Conexión eléctrica	Mediante conector de tres polos Din 43650 EN60529 - PG9				
Correction electrica	Bajo demanda salida con cable				
Temperatura	De proceso -5 a +90 °C				
·	Ambiente -5 a +80 °C				
Dimensiones del transmisor	Véanse planos				
Peso	<250 gramos (con caja de embalaje e instrucciones)				
Conformidad CE					

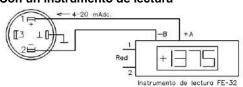
5. DIMENSIONES (en mm.)


6. CONEXIONADO

5.1 Rosca a proceso



5.1Dimensión del cuerpo


6.1 Con una fuente de alimentación

6.2 Con relés amplificadores

6.3 Con un instrumento de lectura

Esta publicación no pretende sentar las bases de un contrato y la empresa se reserva el derecho de modificar sin previo aviso el diseño y las especificaciones de los instrumentos, de acuerdo con su política de continuo desarrollo.